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Abstract 
 A new methods to constrain brain MRI(Magnetic Resonance 

Imaging) registration, and perform experiments evaluating the 

alignment of manually-traced structures, reduction of intersubject 

variance, and morph metric results using group wise registration is 

compared against traditional MRI.In multistructure diffeomorphic 

registration to brain registration, where a set of initial segmentations is 

used as structures along with the MRI. By using image registration, it 

restrict the scope of structures to those that can be represented 

volumetrically as images, such as MRI volumes or anatomical 

segmentations, or those that can be interpolated on a volumetric 

grid.This method uses Mean Shift algorithm to efficiently segment the 

gray and white matter.  

Index Terms—Atlases morphometry, brain registration, diffeo- 
morphisms, MRI. 
 

 

1. Introduction 
 

HOLE brain image registration is a useful and often 

necessary tool for studying morphometry and pooling 

information in a central space. Registration can be a diffi- 

cult task considering the anatomical variability and structural 

complexity present in the human brain, motivating the use of 

structure-specific information (anatomical guidance) to initial- 

ize and constrain registration in a meaningful way. In [1], we 

described how individual brain structures could be used to per- 

form an initial low- and high-dimensional alignment, leading to 

improved registration of specific subregions in the brain. More 

direct shape-matching approaches [2] have shown that using 

manually traced segmentations to drive the registration 

instead of MRI intensities can also improve registration of 

specific corti- cal and neocortical regions. The main 

contribution of this study is a registration framework that 

concurrently employs shape- matching with automated 

segmentations of multiple structures, and image-matching to 

obtain an anatomically guided diffeo- morphic registration 

that can more accurately align the individ- ual structures in 

images. 

 

 

 

Previous work integrating registration and segmentation can be 

categorized into those that perform the tasks simultaneously 

[3]–[5], and those that perform the tasks in sequence [2], [6]–[9]. 

Simultaneous, or joint segmentation and registration approaches 

are attractive because they model the inherent interdependence 

of each component. However, because of limitations in how 

the segmentation and registration models can be simultaneously 

optimized, these methods have not been able to take advantage 

of more sophisticated or specialized approaches. In contrast, by 

employing registration and segmentation sequentially, where 

the contribution becomes how one applies the results of one to 

aid the other, specialized and potentially disparate techniques, 

such as surface-based and volume-based segmentation, can be 

combined to provide a more accurate result. We exploit this 

idea in this study by making use a segmentations derived from a 

sophisticated image analysis pipeline employing surface-based 

registration, namely Freesurfer, and use these to drive a 

highly deformable large-deformation diffeomorphic 

registration algorithm [12]. Thus, conceptually the multistruc- 

ture registration could be thought of as a refinement iteration 

where a full 3-D diffeomorphism is found using the label con- 

straints generated via an earlier iteration of lower dimensional 

and surface-based registration techniques. 

A key component of many group-based neuroanatomical 

studies is the extraction of morphometric features that can 

be used for discrimination or characterization of anatomical 

variability within or across groups. Whole brain morphometry 

approaches, such as voxel-based and tensor-based morphom- 

etry (TBM) compute morphometric features at a voxel-wise 

level, which can then be used in mass-univariate or multivariate 

statistical analyses. Tensor-based morphometry makes use of 

the transformations obtained from registration to measure the 

amount of deformation required to match a subject’s anatom- 

ical features to a template. A subject that is morphologically  

very different would require a greater amount of deformation in 

registration to match the template, whereas a subject morpho- 

logically similar to the template would require less deforma-  
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tions. Since the sensitivity of TBM inherently depends on 

how accurate the underlying registration algorithms are, we 

also in- vestigate how our proposed registration methods 

perform when applied to TBM. 

 

We begin by introducing our multistructure registration 

framework, then describe a groupwise implementation for av- 

erage atlas building. We then describe how Freesurfer 

segmentation. 

2.Methods 

Segmentation, we have the energy functional for our multi   

structure registration 

A. Multistructure Registration 
 

Diffeomorphic registration algorithms that ensure the result- 

ing transformations are one to one, invertible and smooth, are 

desirable because they preserve the topological properties of 

the underlying anatomy. We employ a large defor- mation 

diffeomorphic registration algorithm in this study for these 

reasons; however, it is possible to implement the proposed 

Now, we have additional weights λSe g ,i specifying the relative 

influence of each segmentation in the overall registration. In 

this study, we chose equal weights, and thus equal 

contribution for all segmentations and the MRI, λMR   = λSe g 

,i , i = 1 . . . N. Note that by employing structure 

segmentations in the energy functional as such, point 

correspondences between segmented volumes do not have to  

 

Typically,  the registration is driven by the intensities of the 

corresponding MR images, using error terms such as sum of
 , and K : L2 (Ω, R3  → 

anatomy, and has been shown to better align regions such as 

the medial temporal lobe . In our multistructure registration 

framework, we add a number of shape-matching terms, each 

V  is a compact self-adjoint operator defined by  a, b L 2   =  Ka, b V ,   such   that   for   any   smooth   vector   field  f ∈  
V, K (L†L)f  = f is satisfied [12]. The operator L is chosen 

corresponding to a segmentation of a volumetric structure, and to be of the Cauchy–Navier type, L =  α∇ + γI , where I is 
2          ∂ 2

 
∂ 2                ∂ 2

 

register all of these structure channels simultaneously along with the identity operator and ∇ = 
∂ x 2   + 

∂ y 2   + 
∂ z 2    is the Lapla- 

the MRI. We now describe how the large deformation diffeo- 

morphic formulation  was extended toward multistructure 

registration. 

cian operator. The derivation is a straightforward extension of 

the previous work [12]. 

1) Locally Optimal Large Deformation Diffeomorphisms: 

Let  the  pair  I 
MR  

and  I 
MR  

of  whole brain MR images An LDDMM optimizes over the full space-time flow and is 

be given, and let segmentations of N  structures, I Se g ,i , i ∈ 

thus has heavy computational and memory requirements. When 

[1, . . . , N ],  and I 
Se g ,i 

, i ∈ 

[1, . . . , N ], be available. The dif- dealing with large databases of full resolution whole brain MRI 

feomorphic transformation matching Ia and Ib is given by and multiple structures, these requirements can become restric- 

ϕ : Ω → Ω such that Ia ◦ ϕ
−1  ≈ Ib . This transformation 

ϕ is built from the flow of smooth time-dependent velocity 

vector field, vt ∈ V, t ∈ [0, 1], where V is a Hilbert space 

of smooth,compactly supported vector fields on Ω. Such a 

velocity vector field defines the evolution of a curve φ0 ,t , t ∈ 

[0, 1] via the evolu tion equation φ̇ 0 ,t  = vt (φ0 ,t ) such that 

the end point φ0 ,1 of the curve φ at time t = 1 is the 

particular transformation ϕ = φ0 ,1that is sought for 

registration. Let the notation φs, t : Ω → Ωdenote the 

composition φs, t = φt ◦ (φs )−1  with the interpretation 

that φs, t (y) is the position at time t of a particle that is 

atposition y at time s. Hence, the transformed image Ia is 

given by Ia ◦ ϕ
−1 = Ia ◦ φ1 ,0  ≈ Ib   and the transformed 

target im- age is Ib  ◦ φ0 ,1 .  
tive. If it is not necessary to find the shortest geodesic path 
[12] 

connecting two images, that is, if one is interested in 

diffeo- morphic registration and not concerned with 

computing metric distances, then a locally optimal (or 

greedy) solution to the variational problem can be used. 

Christensen et al. [16] proposed a large deformation fluid flow 

registration exploiting the fact that if the operator L does 

not differentiate in time, then the space-time optimization 

can be 
split into a sequence of optimizations that solve for the 
locally optimal velocity at each time index. In this setting as 
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described in [12], the locally optimal velocity fields satisfy  
the partial differential equation 

L
†
Lvt  + bt  = 0                                  

  

 

Here, the weight λMR    enforces how much mismatch in the 

images is penalized. Adding additional matching terms for each 

 
 

This can be extended to the multistructure case, LDDMM- 

MultiStruct, by including additional terms for multiple struc- 

tures.

Using  the optimizer then becomes vt = K (bt ), which can 

be integrated to compute the map φt,0 . 

 

B.  Groupwise Multistructure Registration 
 

When applying pairwise registration to spatially normalize 

all subjects to a given template, one has to decide which subject 

to choose as the template. The choice of template also affects 

how well the pairwise registrations perform, as subjects that are 

more similar to the template will likely be registered better. To 

avoid choosing a template, groupwise, or unbiased approaches 

have been proposed in the past [17]–[20], where the central tem- 

plate is generated and represented as an average of the group. 

One natural way to define a central template is using the Fréchet 

mean, where the intrinsic mean of a set of data points xi is de- 

fined as the point x̄ that minimizes the sum of squared distances 

to each data point 
 

M 

x̄ = argmin 
      

d(x, xi )
2 .                         

 

 
 
Algorithm 1.    Multi-structure group-wise average. 

 

where Ī is a multistructure image consisting of ĪMR  and N 

structure-channels, ĪSe g ,i . For 2) we use pairwise diffeomor- 

phic registration from Ij  to the fixed average Ī to obtain the 

maps ϕj . We used a multiscale smoothing schedule by succes- 

sively decreasing the viscosity parameter, α, in the fluid-flow 

differential operator L after each iteration. The sequence used 

was α = 2, 1, 0.5, and 0.1, with a fixed γ = 0.01, which was 

chosen based on experiments quantifying effective smoothing 

to be equivalent to 20, 15, 10, and 5 mm effective smooth- 

ing, as shown in [23, Appendix B]. Algorithm 1 describes this 

procedure. 

 
x ∈X j =1  C.Freesurfer Structure Segmentation

Extending this idea to the general problem of template estima- 

tion, the central template Ī  thus becomes the image that requires 

the minimal deformation ϕi to match each image Ij in the set 

of images 
 

M 

 

In this section, we describe how we applied our multistruc- 

ture diffeomorphic registration to brain registration, where a 

set of initial segmentations were used as structures along with 

the MRI. Because we are using image registration, we thus re- 

strict our scope of structures to those that can be represented {ϕ̄j , Ī  = argmin 
       

E(Ij ◦ ϕj , I ) + D(Id, ϕj )
2 .       

ϕ j ∈G,I ∈ I 
j =1  

volumetrically as images, such as MRI volumes or anatomical 

segmentations, or those that can be interpolated on a volumetric 

We extend this idea to multistructure registration by 

computing the groupwise average subject, defined as 

the multistructure image ̄I that has minimal distance to 

each image in the database surface-based atlas. The 

surface-based labels are mapped from the atlas using the cortical 

folding patterns, specifically the cur- vature of the cortical 

surface, and are then converted to a volu-

  
.      

metric representation by projecting the label values from the sur- 

face to the voxels labeled as cortical gray matter. The use of these 

To solve for {ϕ̄j , ̄I} we use an alternating estimation proce- structures from Freesurfer thus, provides the multistructure reg- 

dure, where 1) ϕ̄j  is fixed to find ̄I, and 2) ̄I is fixed to find ϕ̄j . For 

1) when transforming the images into the average image space 

we used the Jacobian to preserve the information regarding the 

volumes of structures, as was also done in [21], [22] 
 

 M
 

istration with constraints from a surface-based representation of 

the cortex, which is known to better represent anatomical struc- 

ture and function of the highly convoluted cortical topology. We 

used the following eight subcortical structures, left and right in- 

clusive: lateral ventricles, caudate nucleus, putamen, pallidum, 

Ī = 
j =1  |Dϕj |Ij  ◦ ϕj 

j =1  |Dϕj |  nucleus accumbens, thalamus, hippocampus, and amygdala. For 

cortical structures, we used the following 34 labels, left and right 
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inclusive: bankssts (banks around the superior temporal sulcus), 

caudal anterior cingulate, caudal middle frontal, corpus callo- 

sum, cuneus, entorhinal, fusiform, inferior parietal, inferior tem- 

poral, isthmus cingulate, lateral occipital, lateral orbito-frontal, 

lingual, medial orbito-frontal, middle temporal, parahippocam- 

pal, paracentral, pars opercularis, pars orbitalis, pars triangu- 

laris, pericalcarine, postcentral, posterior cingulate, precentral, 

rostral anterior cingulate, rostral middle frontal, superior frontal, 

superior parietal, superior temporal, supramarginal, frontal pole, 

temporal pole, and transverse temporal. Including the MRI as 

the first structure, we have 43 structure channels for each hemi- 

sphere making up our multistructure set. 

The segmentation labels making up the multistructure set 

were  extracted from  the  Freesurfer output  images,  namely 

aparc+aseg.mgz, 1  mm  isotropic  voxels,  256 × 256 × 256, 
smoothed with a Gaussian filter (σ = 2). Smoothing was per- 

formed to mitigate labeling and discretization errors commonly 

found on the boundaries of the Freesurfer segmentations. For 

each structure, the labels from both hemispheres were combined 

into a single image with unique intensities. 
 

 

D. Initial Affine Registration and Intensity 

Normalization 

Before performing the diffeomorphic multistructure regis- 

tration, the target subjects were first aligned using a 12-D 

affine transformation. The registration was performed on the 

For pairwise registration, the bounding box was applied to 

the affine-registered target brain and multistructure set, and 

multistructure registration was carried out as described in 

Section II-A, with the parameters of the differential operator 

being α = 0.1 and γ = 0.01. 

For the group-wise approach, a template subject was initially 

chosen, all targets were affine registered to it, and the bounding 

box defined on it was applied to all targets. For the registration 

a multiscale smoothing scheme was used, which successively 

decreased the viscosity parameter α after each iteration. The 

sequence used was α = 2, 1, 0.5, and 0.1, with a fixed γ = 0.01, 

which was chosen based on experiments quantifying effective 

smoothing to be equivalent to 20, 15, 10, and 5 mm effective 

smoothing. 

 
F. Brain Registration Evaluation 
 

The goal of brain registration is to bring structures into align- 

ment with each other; thus, a commonly-used method to evaluate 

registration performance is to manually segment brain structures 

in a group of subjects, and measure how well the structures are 

aligned after registration. To use this label-agreement method 

of evaluation, we performed fully crossed pairwise brain regis- 

trations on a given dataset, that is, each subject Ij is registered 

to every other subject Ik = j and compared the manual 

segmen- tations of this subject, I Ma nu a l with the propagated 

manual seg- 

Freesurfer tissue segmentation images of the template and tar- 

get, which have discrete values of (0, 85, 170, 255)  for the 

mentations, I Ma nu a 
l ◦

φj,k . 

background, cerebrospinal fluid, gray matter, and white mat- 

ter, respectively. The algorithm was implemented in the Insight 

Toolkit and used regular step gradient descent and a mean- 

squared error image metric with the transform initialized with 

the translation bringing the centers of mass into alignment. 

Once the transform was computed, the target MR images and 

Freesurfer labels were all transformed to the template space 

using this 12-parameter transformation and linear interpolation. 

To address MRI intensity nonstandardization, we performed 

a piecewise linear intensity transformation of the target image, 

where the median white matter, gray matter, and cerebrospinal 

fluid intensities of the template and target image are used to 

define the transformation. These median intensities are found 

by masking the nonuniformity corrected MRI images with the 

Freesurfer tissue segmentation images, which are first morpho- 

logically eroded to avoid voxels that may be susceptible to partial 

voluming. 

 

E.  Diffeomorphi Registration 

 
 

To limit computational and memory requirements, we con- 

struct a bounding box around the template brain, and use this 

subvolume in registration instead of the entire 256 × 256 × 256 
volume. The bounding box is defined using the extents of the 

skull-stripped brain allowing for at least 16 voxels (16 mm) of 

padding at each boundary, and also ensuring the dimensions of 

the image are divisible by 16, such that this level of data paral- 

lelization could be used. The bounding box is applied to both 

the MRI and multistructure set of the template. 
G. Tensor-Based Morphometry 
We applied TBM to investigate how well the multistructure 

and MRI-only registration methods can detect the expected dif- 

ferences between a group of demented patients and cognitively 

normal patients. Groupwise registration was carried out as de- 

scribed in the previous section to obtain transformations and 

log-determinant Jacobian maps from the average to each sub- 

ject. 
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The SurfStat package1 , is capable of random-field theory 

analysis with general linear and multivariate modelling on both 

volumetric and surface data. In this software, the linear model 

is specified for example as 
 

P = Group + Age + Gender 
 

where Age and Gender  are nuisance covariates in the model 

testing for group differences, obviating the need to specify a 

design matrix. We use SurfStat to generate statistical parametric 

maps for our TBM results using the log-determinant Jacobians. 

 
3. Materials 

 

 

We used freely available MR imaging datasets to evaluate our 

brain registration methods. These datasets are available online 

to researchers, and provide an open repository for data sharing 

and method comparison. 
 

The Internet brain segmentation repository (IBSR) 1.5T 

Dataset consists of 18 healthy controls, provided by the Center 

for Morphometric Analysis at Massachusetts General Hospi- 

tal. The ages of the subjects ranged from juvenile to 71 years. 

Manual segmentations were provided for 48 cortical regions. 

 

The Laboratory of Neuro Imaging Probabilistic Brain Atlas 

(LPBA40) [24] consists of 40 healthy controls, provided by 

the University of California, Los Angeles Laboratory of Neuro 

Imaging. Subjects were scanned on a GE 1.5T scanner, with 

average age at time of acquisition 29.20 ± 6.30 (mean ± S.D.) 
years (min = 19.3, max = 39.5 years). Manual segmentations 

of 56 structures, mainly cortical, were provided, with a manual 

segmentation protocol defined by Shattuck et al. [24]. 

 

These two datasets were recently used to evaluate brain reg- 

istration accuracy for 14 commonly used registration methods 

[25]. Note that two other smaller datasets (CUMC12, MGH10) 

were also used in that study; however, we only used the two 

largest datasets here. Since we used the same datasets, method- 

ology, and evaluation metrics as the Klein et al. evaluation, we 

can directly compare our results to the leading brain registration 

methods applied in that study. 

For evaluating group-wise average atlas construction and 

morphometry, we used MRI datasets from the Open Access 

Series of Imaging Studies (OASIS), freely available online 

(http://www.oasis-brains.org). We used baselines scans from a 

dataset consisting of 150 subjects, aged 60–96 years with 64 of 

the subjects characterized with very mild to mild Alzheimer’s 

disease [26]. 

4. Results 
 

A.  Brain Registration Evaluation 
 

Figs. 1 and 2 plot the Dice overlaps for the LPBA and IBSR 

datasets, averaged over all pairwise registrations in each dataset. 

Since we did not observe a significant difference between left 

and right structures, the mean dice scores for bilateral struc- 

tures were also averaged to summarize the results further. We 

compared locally optimal LDDMM registration using multi- 

structure (LDDMM Multistructure) and MRI-only (LDDMM 

MRI) costs against the four top ranked registration methods from 

the [25] evaluation: SyN [27], ART [28], IRTK [15], and SPM 

Dartel [29]. One of the most significant findings of that study 

was that the relative performances of the registration methods 

under comparison appear to be little affected by the choice of 

subject population, labeling protocol, and type of overlap mea- 

sure, thus our choice of only using the two largest datasets and 

the Dice overlap measure is justified. On the LPBA dataset, we 

see that our multistructure approach improves accuracy over our 

MRI-based approach for nearly all structures, except for the 

gyrus rectus and lateral orbitofrontal gyrus, both located in the 

frontal lobe. The improvement is espe- cially notable in the 

hippocampus and postcentral gyrus, where the MRI-based 

method is the worst performing of the group and the 

multistructure method is one of the best performing. 

Comparing to the other methods, our Dice overlaps are gener- 

ally in the same range except for the cerebellum and brainstem, 

where both LDDMM and LDDMM MultiStruct are consider- 

 

ably higher. This could be attributed to the fact that our brains 

were not skull-stripped prior to registration, whereas [25] used 

the manual labels to generate a brainmask for skull-stripping; 

it is possible that the additional information in the neck aids in 

registration of the mid-brain regions. 

For the IBSR dataset, we see multistructure generally has 

higher overlaps than MRI-based for most regions, except for the 

temporal pole, temporal gyrus, parietal lobule, supramarginal 

gyrus, frontal orbital gyrus, and Heschl’s gyrus. The reduced 

performance in the frontal lobe was also seen in the LPBA 

dataset. Comparing to the other methods, our methods have 

higher overlaps for all structures. 
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Fig. 2.    Mean Dice overlap scores for each manually traced structure (bilateral structures combined) from fully crossed pairwise registrations of the 18 subjects 
in the IBSR dataset (324 pairwise registrations). Our locally optimal LDDMM registration with multistructure and MRI-based cost functions are compared against 

the top performing registration methods: SPM Dartel, SyN, IRTK, and ART. 
 

 

B.  Groupwise Average Atlas 
 

To qualitatively evaluate the performance of our multistruc- 

ture and MRI-based groupwise average atlas generation, we 

performed them on the OASIS 150 subject set, generating an 

LDDMM MultiStruct average and an LDDMM MRI average. 

Fig. 3 shows representative axial slices of the average T1 MRI 

image, generated by transforming each subject’s T1 MRI im- 

age to the average space, using the final mappings from the 

group-wise average, and performing voxel-wise averaging. In 

regions where the anatomy is not well aligned and thus has a 

mixture of different tissue types from the subjects, the image 

is effectively blurred. In contrast, where the anatomy is well 

aligned the anatomical boundaries are effectively sharper. We 

see here that the multistructure approach improves registration 

in many regions, especially cortical regions, as can be seen by 

the sharp and well-defined boundaries. To further investigate 

this effect, we transformed the gray matter segmentations from 

each subject to the average space to generate an average gray 

matter mask, as shown in Fig. 4. We see a similar pattern here, 

with greater definition of cortical folding patterns in the average 

generated by multistructure registration. 

 

To further inspect alignment of cortical anatomy with our 

approaches, we performed a cortical surface reconstruction of 

the average MRI images using the Freesurfer image analysis 

suite. This processing also includes a cortical labeling using 

curvature-based surface registration to an atlas. Fig. 5 shows 

the cortical surface reconstructions for the average images from 

MRI-based and multistructure group-wise registration. Here, we 

see that the multistructure-based cortical surface shows much 

greater detail and consistency, closer to what one would see 
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in an individual’s cortical surface, demonstrating the superior 

alignment of cortical regions as compared to single-channel 

MRI-based registration. 

We can quantify the alignment of these group-wise ap- 

proaches by computing the residual variance in the intensi- 

ties of the aligned MRI images. We computed the variance of 

prenormalized MRI intensities at each voxel, and thresholded 

at σ = 20 to generate a map that can be overlaid on the average 

 

 

 

Fig. 3.    Average T1 MRI images from groupwise registration of all subjects in the OASIS database (150 subjects), comparing the average obtained via 
(a) MRI-based (single-channel) and (b) multistructure registration, both using locally optimal LDDMM registration. Registration performance can be assessed 
by whether the anatomical features are sharp (high accuracy) or blurred (low accuracy). Both methods show good alignment in the subcortical regions but the 

multistructure variant exhibits much better cortical alignment resulting in sharper delineation of cortical folds in the averaged brain MR image. 
 

 

Fig. 4.    Average gray matter segmentations from groupwise registration of all subjects in the OASIS database (150 subjects), comparing the average obtained via 
(a) MRI-based (single-channel) and (b) multistructure registration, both using locally optimal LDDMM registration. Registration performance can be assessed by 
whether the anatomical features are sharp (high accuracy) or blurred (low accuracy). We can see better definition of the cortical folding patterns with multistructure 

registration. 
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MRI image to compare residual variance for the multistructure  

and MRI-based registration approaches, as shown in Fig. 6. 

 

C.  Tensor-Based Morphometry 
 

 

We tested for the effect of group using SurfStat with the linear 

model, M  = 1 + Group, and examined differences be- tween 

nondemented (CDR = 0) and demented subjects (CDR = 

0.5/1). Fig. 7 shows the T-statistics for the comparison of the 

demented group to the nondemented group, showing greater 

differences in the medial temporal regions using the multistruc- 

ture approach. Fig. 8 shows the significant (P < 0.05) clusters 

of relative volume contraction in the demented group found by 

the MRI-based and multistructure groupwise registration meth- 

ods, with significance level correction using RFT. We see large 

significant clusters in the medial temporal lobe and hippocam- 

pus as detected by the multistructure registration, whereas the 

MRI-based registration detects a small cluster in the posterior 

  

 

Fig. 5.    Cortical surface reconstructions of the average MRI images generated using (a) MRI-based (single-channel) and (b) multistructure group-wise registration 
generated by Freesurfer. Cortical regions were labeled by surface-based registration to the Freesurfer cortical parcellation atlas. These visualizations show greater 
detail and consistency with expected cortical anatomy, demonstrating that the multi-structure registration aligns the cortical regions better than the MRI-based 

registration. (a) Cortical surface of MRI-based average. (b) Cortical surface of multistructure average. 

 
Fig. 6.    Visualization of the residual variance from groupwise registration of all subjects in the OASIS database (150 subjects) comparing the (a) MRI-based 
approach (b) to the multistructure approach. The variance at each voxel was computed using the MRI image intensities of all subjects in the average space, and the 
visualization is showing the variance thresholded at σ = 20 to aid comparison. We see that the multistructure approach results in less overall residual variance, 

and that variance is generally greater in the posterior regions of the brain. 
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cingulate gyrus. Both methods failed to detect any differences 

of relative volume expansion in the demented group. 
 

 

5. Discussion 
 

Our multistructure framework has the significant advantage of 

being flexible enough to allow use of computed features derived 

from MRI images, such as white matter tract-based labels and 

diffusion tensor metrics or additional modalities such as BOLD 

functional images, susceptibility weighted images, magnetiza- 

tion transfer images, or quantitative relaxation-based maps. A 

multicontrast LDDMM approach specific to the problem of dif- 

fusion tensor image registration [30] has also been proposed. 

In this approach, whole brain registration was performed with 

diffusion-tensor derived images such as b0 , fractional anisotropy 

(FA) and combined b0 , and FA with the goal of better aligning 

whole brain white matter regions and ventricles for DTI nor- 

malization. The findings of this study are similar to ours in that 

the incorporation of multiple streams of information improves 

registration. Our approach of using multiple structure segmen- 

tations to drive local whole brain registration shows for the first 

time that, as expected, incorporation of individual segmentations 

into the registration further improves local registration accuracy. 

A drawback of this approach is the additional burden to provide 

initial structure segmentations; however, employing a tool such 

as FreeSurfer, which is highly automated, free, and commonly 

used in the neuroimaging community, this additional burden is 

placed on increased computational time only. 

Group-wise registration approaches that solely use the MRI 

image intensities to generate an average template are suscepti- 

ble to partial volume effects that occur when intensities from 

different tissue types are averaged together as a result of mis- 

registration. This can lead to the generation of false anatomy, 

if for example, CSF intensities were averaged with WM in- 

tensities, the average obtained would be interpreted as a GM 

intensity. Our multistructure approach helps alleviate this prob- 

lem by using separate channels for each cortical gray-matter 

parcellation, such that when these are averaged together there is 

no partial-voluming of different tissue types. This effect could 

explain the much higher cortical registration accuracy seen with 

the group-wise multistructure approach. Previous studies on us- 

ing segmentation shape matching for cortical alignment, such 

as [2] also support this conclusion. 

 

The combination of different structure segmentations in the 

whole brain registration as we have proposed allows the incor- 

poration of a priori relative weights reflecting confidence levels 

for variability of individual ROIs as well as confidence in seg- 

mentation accuracy. At this time, these weights are fixed to be 

equal; however, these could be optimized over a small train- 

ing database for best whole brain registration in a principled 

  
Fig. 7.    T-statistic maps showing TBM-based group differences between non- 
demented and demented subjects in the OASIS database, comparing results 
from (a) MRI-based group-wise registration (b) to multistructure group-wise 
registration. Cool colors indicate regions where relative expansion is greater in 
demented subjects, and warm colors show where relative contraction is greater 
in demented subjects. We see relative expansion in the ventricles using both 
methods, and a high level of contraction in regions occupied by the hippocam- 
pus, thalamus, and medial temporal lobe detected by the multistructure method 
only. 

 

 
 

Fig. 8.    Visualizations showing regions of significant (P < 0.05) TBM-based 
group differences between nondemented and demented subjects in the OASIS 
database, comparing results from (a) and (b) MRI-based group-wise registration 
to (c) and (d) multistructure group-wise registration. The surface visualizations, 
(a) and (c), depict significant regions of voxel-wise significance (red) and cluster- 
wise significance (blue). The orthoslice visualizations, (b) and (d), show the av- 
erage MRI overlaid with outlines surrounding all significant regions (both voxel- 
wise and cluster-wise significant). These clusters relate to the positive T-statistics 
shown in Fig. 7, showing where demented subjects experience greater relative 
contraction than nondemented subjects. We see large clusters in the temporal 
lobe, hippocampus, and thalamus with the multistructure approach, and a single 
small cluster in the posterior cingulate with the MRI-based approach. 
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way. Another approach would be to weigh the relative channel 

contributions of the segmentation channels to be inversely pro- 

portional to the size of the structures, so errors in alignment over 

smaller structures are penalized more heavily. In the evaluation 

of cortical overlap metrics, we had seen reduced performance 

of frontal lobe alignment with the multistructure approach. This 

could be due to the relatively larger size of Freesurfer corti- 

cal parcellations in the frontal region; if the parcellations are 

smaller, the effective correspondences through shape matching 

are at a finer scale. Conversely, if the parcellations are larger and 

encompass more cortical folding variability, their effectiveness 

is reduced since they would be more susceptible to local min- 

ima. Adaptive weighting of the structure channels could thus 

potentially aid in addressing this problem as well. 

 

Another limitation of our approach is the large amount of 

computational resources required for multistructure registration. 

Although the computational time and memory requirements in- 

creases linearly with the number of structures, or channels, in 

the multistructure approach, we do, however, use a large number 

of structures for our brain registration, with 37 cortical parcella- 

tions and 8 subcortical structures. If we were to include further 

modalities, such as diffusion tensor or functional data, the total 

number of channels would further increase. Also, the FreeSurfer 

processing pipeline often takes several hours to complete corti- 

cal reconstruction and segmentation for a single brain. However, 

thanks to significantly increasing hardware capabilities in face 

of rapidly decreasing hardware costs, and to several national 

and international high-performance computing (HPC) initia- 

tives that now allow easy access to computational resources; 

the tradeoff between computational cost and enhanced accuracy 

of whole brain registration, as demonstrated in Figs. 1 and 2, is 

increasingly acceptable. 
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